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Exact solutions are obtained for large amplitude waves propagating in cold magnetized cylin-

drical plasmas bounded by rigid dielectrics.
investigated.

Nonlinearly interacting bulk and surface waves are

PACS number(s): 52.40.Hf, 52.35.Fp, 52.35.Mw, 52.35.Sb

I. INTRODUCTION

The existence of exact solutions for finite amplitude
waves propagating in plasmas bounded by dielectric con-
tainers has been pointed out recently [1-3]. These solu-
tions satisfy the fluid equations for the plasma, Maxwell’s
equations for the electric and magnetic fields, as well as
the appropriate boundary conditions. No approximation
of any kind, such as perturbation or truncation, is in-
voked in obtaining the solutions. Such results are of spe-
cial interest because, besides describing accurately the
physical situation within the validity of the basic equa-
tions, they are helpful in verifying new approximations
or numerical schemes in the study of nonlinear waves and
instabilities.

Low-temperature plasmas are of interest [4-6] because
of their relevance in modern technology, such as in lab-
oratory plasma production and diagnostics, new sources
of coherent radiation and particle beams, electronic and
optical devices, as well as in machines for plasma-assisted
material processing [7-13]. They differ from the hot,
fusion-related plasmas in that they are confined by rigid
containers instead of strong magnetic fields. The con-
tainers can be of either conducting or dielectric material.
Thus natural oscillations can appear inside the plasma
as bulk or volume waves as well as on the plasma-wall
interface as surface waves. Since very large amplitude
oscillations are often excited during the production or
maintenace of low-temperature plasmas, it is important
to understand the details of the nonlinear volume and
surface modes and their interaction.

Often, external magnetic fields are used to control the
parameters of low-temperature plasmas. In this paper,
we investigate nonlinear plasma waves in and on the sur-
face of a magnetized plasma bounded by a cylindrical
dielectric. Exact solutions for nonlinear bulk and surface
waves are obtained.

II. ELECTRON DYNAMICS

We comnsider here electrostatic waves in a cylindrical
cold electron plasma in a positively charged background
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of immobile ions. The plasma is bounded at r = R by a
rigid dielectric of constant permittivity €4. An external
magnetic field Bz along the cylinder axis is assumed to
be present. The evolution of the electron density n is
governed by the continuity equation

On+V.(nv)=0. (1)

The electron fluid velocity v satisfies the fluid momen-
tum equation

Btv+(v-V)v=%(E+v><Bg), (2)

where ¢ = —e and m are the electron charge and mass,
and E and By are the wave electric field and the external
magnetic field. The plasma is assumed to be of low tem-
perature such that the pressure effects can be neglected.

The approach to be used is similar to that of Lorenz
[14], who investigated nonlinear waves and deterministic
chaos in atmospheric physics by first separating the spa-
tial variations from the temporal one. However, here no
ad hoc truncation of the higher harmonics will be made.

Accordingly, for the spatial wave structure inside the
plasma, we set

n = n(t), 3)
v, = (v2 + v1c0s20 + v4sin20)r /R, (4)
vg = —(v3 — v4c0s20 + vy 5in20)r/R (5)

and
Pr<r = (Pc + Pm 0520 + @ sin20)r?/R? — ., (6)

where cylindrical coordinates have been used. Here, vy,
V2, U3, V4, Pc; Pm, and @, are functions of time only.
We shall consider electrostatic oscillations, i.e., E,«p=
_V‘Pr<R-

The Ansitze (3)—(6) have been found by trial and er-
ror, such that the time and space dependences of the re-
sulting equations are separable. We have not been able to
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find a nontrivial simpler representation, but more com-
plex representations involving higher spatial harmonics
probably exist.

For the potential inside the dielectric, we assume

R2
¢r>R = (pm c0os 20 + ¢p sin26) — ()

which satisfies the Laplace equation. Thus the corre-
sponding electric field E,~ p= —V ¢, g in the dielectric
decays as r—3 away from the cylinder.

The equations are completed by the Poisson equation

Vi = —%(n—no) ; (8)

where ng is the constant ion density. Note that the sys-
tem does not have to be neutral.

The boundary condition, which is also a nonlinear re-
lation, is

[gqnvr — €00:0,¢],_p_, = [—€0€a0t0r¢],_p , » (9)

which represents the continuity of the current density
across the interface between the plasma and the rigid
dielectric.

Consistent with the cold-plasma approximation, the
thickness (usually of the order of the Debye length) of
the surface layer [13,16] at the interface is assumed to be
smaller than any other characteristic dimension, in par-
ticular, the attenuation length of the surface-wave fields,
and it is thus neglected. This thin layer also acts as a
source and a sink for the plasma particles.

III. EVOLUTION EQUATIONS

As mentioned, the Ansitze (3) — (7) have been chosen
such that the spatial and time dependences of the phys-
ical quantities are separable. In fact, substituting them
into (1), (2), and (8), using the boundary condition (9),
and equating terms with the same spatial dependence,
one obtains

N +2NV, =0, (10)
Vl + 2‘/1V2 = Q‘/:1 - 2¢m 3 (11)

v 2 2 2 2 __
Vot VE+VE-VE+VE=-2¢.—QVs, (12)
Va+2Va(Va—Q/2) =0, (13)
"/:1 -+ 2V2V4 = _2¢n - QVI ) (14)
b = NVa/2 , (15)
(;'Sm:N‘/l/Z(l‘Fsd) ) (16)

and

¢n = NVy/2(1 +€4) , 17)

where we have defined Q = w./wp, N = n/ng, V; =
’U]'/pr (.7 = 1a2a374)7 ¢k = €0SOk/n0qR2 (k = c,m,n),
and where the dot represents the derivative with respect
to time, which is normalized by the inverse plasma fre-
quency w,''. From (10) and (13), we note that V3 —/2=
vaN, where « is a positive constant.

By eliminating V;, one can obtain a set of three second
order ordinary differential equations,

.. 3. . .
NN — §N2 — @2 — ¢ + 2aN*

=(1-N)N*+ %QzNz , (18)

. . . bmN?
Noéy — 20, N = QN ¢, — , 1
b — 26 Ny — $7=- (19)
and
. .o . b N?
n_2 n = - m T T .
No SN QN Tres (20)

which is a set of coupled nonlinear ordinary differential
equations describing the time evolution of waves with
fixed spatial dependences.

IV. SOLUTIONS

Before proceeding with the numerical evaluation of
(18) — (20), let us first briefly discuss the linear limit.
One then finds that (18) yields the dispersion relation of
the upper hybrid waves w?= 2 — Ny +Q2, where Ny is the
equilibrium density. On the other hand, Egs. (19) and
(20) lead to the dispersion relation [w2—No/(1+e4)]%=
w202, which describes the corresponding surface waves.

The coupled evolution equations (18) — (20) have been
integrated numerically for different sets of initial values.
For each case, we integrate up to more than p (= 40)
plasma periods, where yu is the square root of the ion-to-
electron mass ratio. A typical result is shown in Fig. 1,
where the initial values are N= 1.1, N= 0.03, ¢,,,= 0.25,
¢m= 0.035, ¢,= 0.1, and ¢, = 0.025. Figure 2 shows the
phase relations between the nonlinear modes. It is clear
from the figures that the volume and surface waves are
strongly coupled. In fact, the much lower frequency sur-
face waves (¢m, ¢n) are modulated by the volume wave
(N) fluctuations. However, the coupling is not resonant.
This occurs because the nonlinear terms in the evolu-
tion equations are such that frequency and wave vector
matching among the three modes does not occur. For
very large €4, of interest to the short-pulse technology,
we also found very large amplitude solitonlike solutions
for the volume waves. The corresponding magnitudes of
the surface waves ¢,, and ¢,, however, increase indefi-
nitely in a steplike manner. This phenomenon is shown
in Fig. 3, which is for the initial values N= 0.9, N= —0.1,
¢Gm= 0.02, ¢,,= —0.1, ¢,= 0.03, and ¢,,= 0.01. Figure 4
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FIG.1. N -1, ¢m and ¢, versus t. The solid, dashed, and

dash-dotted lines are for N — 1, ¢, and ¢n, respectively, and
the parameters are Q= 2, a= 0.8, and e4= 3.
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FIG. 2. Phase relations corresponding to Fig. 1. The solid,

dashed, and dash-dotted lines are for (N — 1, ¢m), (¢m, ¢n),
and (N — 1, ¢n), respectively.
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FIG. 3. Solitonlike solutions for €4 = 100. The solid, dash,
and dot lines are for N — 1, ¢ and ¢,, respectively, and the
parameters are 2 = 3, a = 0.2, and g4 = 100.
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FIG. 4. The phase relations of the variables in Fig. 3. The
solid, dashed, and dash-dotted lines denote (N —1, ¢m), (¢m,
¢n), and (N — 1, ¢n), respectively.

shows the corresponding phase relations. In general, we
found that the results are not very sensitive to the initial
conditions, but they are sensitive to the parameters €,
a, and 4.

Although one cannot solve the system (18) — (20) an-
alytically, in general, we found nevertheless after much
trial and error a class of particular solutions which might
be of certain interest. Accordingly, we make the Ansatze

N = (fosinwt + f1)71, (21)
¢m = (gosinwt + gz coswt + ¢g1)N , (22)
¢n = (hosinwt + hy coswt + h1)N (23)

where the fo 1, go,1,2, ho,1,2, and w are constants. The
latter can be determined if we insert the Ansitze (21)—
(23) into (18) — (20).

As an example, for the case Q2 = 0, we have g;=
g2= ho= hi1= ho= 0, f¢= fI + 20(2 + €4)/ea, fr=
1/w?(1+eq), g2= (2—w?)3f2/2w?, and w?= 1/(1+€4/2).
In dimensional form, the latter becomes

w=uwp//1+¢e4/2, (24)

which characterizes a strongly nonlinear mode not
pointed out previously. At a particular time, t = to,
defined by fosinwt, + fi = 0, both N and ¢,, are sin-
gular and vary as 1/(t — to)2. A similar singularity can
be found also in one-dimensional systems [15].

V. DISCUSSION

We have shown in this paper that exact nonlinear wave
solutions can be constructed for a cylindrical magnetized
low-temperature electron plasma bounded by a dielec-
tric. Linearly, three distinct modes, one volume and two
surface, exist in the system. Nonlinearly, these modes
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are selectively coupled, but not resonantly.

The present results may be relevant to surface-wave
generated plasmas, control of plasmas for material pro-
cessing, modulation of wave or beam pulses in fiber-optics
communication, as well as for the verification of approxi-
mation and numerical schemes. Since the evolution equa-
tions are obtained without making use of any perturba-
tions and truncations, when appropriate dissipation is
added, the system may provide a mathematically exact
model for investigating wave instabilities, saturation, and
deterministic chaos [14]. It should be mentioned that
here we have used the so-called sharp boundary model

for a cold plasma. The model neglects the details of the
transition, or boundary, layer [13,16] between the plasma
and the dielectric. Thus, microscopic physical and chem-
ical processes [13,16] which may occur in this layer have
been neglected.
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